Approximation and localized polynomial frame on conic domains
نویسندگان
چکیده
Highly localized kernels constructed by orthogonal polynomials have been fundamental in the recent development of approximation and computational analysis on unit sphere, ball, several other regular domains. In this work, we first study homogeneous spaces that are assumed to contain highly establish a framework for tight frames such spaces, which extends works bounded We then show is applicable defined conic domains, consists surfaces solid domains hyperplanes. The require precise estimates rely recently discovered addition formulas with respect special weight functions each domain an intrinsic distance takes into account boundary domain, latter not comparable Euclidean at around apex cone. main results provide construction semi-discrete frame weighted L2 norm characterization best achieved using K-functional, via differential operator has as eigenfunctions, well modulus smoothness multiplier equivalent K-functional. Several intermediate interest their own right, including Marcinkiewicz-Zygmund inequalities, positive cubature rules, Christoeffel functions, Bernstein type inequalities. Moreover, although localizable hold only families many shown doubling weights domain.
منابع مشابه
Approximation by C Splines on Piecewise Conic Domains
We develop a Hermite interpolation scheme and prove error bounds forC bivariate piecewise polynomial spaces of Argyris type vanishing on the boundary of curved domains enclosed by piecewise conics.
متن کاملtight frame approximation for multi-frames and super-frames
در این پایان نامه یک مولد برای چند قاب یا ابر قاب تولید شده تحت عمل نمایش یکانی تصویر برای گروه های شمارش پذیر گسسته بررسی خواهد شد. مثال هایی از این قاب ها چند قاب های گابور، ابرقاب های گابور و قاب هایی برای زیرفضاهای انتقال پایاست. نشان می دهیم که مولد چند قاب تنک نرمال شده (ابرقاب) یکتا وجود دارد به طوری که مینیمم فاصله را از ان دارد. همچنین مسایل مشابه برای قاب های دوگان مطرح شده و برخی ...
15 صفحه اولHigh order parametric polynomial approximation of conic sections
In this paper, a particular shape preserving parametric polynomial approximation of conic sections is studied. The approach is based upon a general strategy to the parametric approximation of implicitly defined planar curves. Polynomial approximants derived are given in a closed form and provide the highest possible approximation order. Although they are primarily studied to be of practical use...
متن کاملApproximation by Conic Splines
We show that the complexity of a parabolic or conic spline approximating a sufficiently smooth curve with non-vanishing curvature to within Hausdorff distance ε is c1ε +O(1), if the spline consists of parabolic arcs, and c2ε + O(1), if it is composed of general conic arcs of varying type. The constants c1 and c2 are expressed in the Euclidean and affine curvature of the curve. We also show that...
متن کاملOn Conformal Conic Mappings of Spherical Domains
The problem of the generation of homogeneous grids for spherical domains is considered in the class of conformal conic mappings. The equivalence between secant and tangent projections is shown and splitting the set of conformal conic mappings into equivalence classes is presented. The problem of minimization of the mapping factor variation is solved in the class of conformal conic mappings. Obt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Functional Analysis
سال: 2021
ISSN: ['0022-1236', '1096-0783']
DOI: https://doi.org/10.1016/j.jfa.2021.109257